Title of article :
On independent domination number of regular graphs Original Research Article
Author/Authors :
Peter Che Bor Lam، نويسنده , , Wai Chee Shiu، نويسنده , , Liang Sun، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1999
Abstract :
Let G be a simple graph. The independent domination number i(G) is the minimum cardinality among all maximal independent sets of G. Haviland (1995) conjectured that any connected regular graph G of order n and degree δ ⩽ n/2 satisfies i(G) ⩽ ⌈2n/3δ⌉δ/2. In this paper, we will settle the conjecture of Haviland in the negative by constructing counterexamples. Therefore a larger upper bound is expected. We will also show that a connected cubic graph G of order n ⩾ 8 satisfies i(G) ⩽ 2n/5, providing a new upper bound for cubic graphs.
Keywords :
Independent domination number , Regular graph
Journal title :
Discrete Mathematics
Journal title :
Discrete Mathematics