Title of article :
The strong Hall property and symmetric chain orders Original Research Article
Author/Authors :
Xiaoyun Lu، نويسنده , , Dawei Wang، نويسنده , , C.K. Wong، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1999
Pages :
8
From page :
161
To page :
168
Abstract :
Let G=(X,Y;E) be a bipartite graph with |X|⩾|Y|. For A⊆X, write φ(A)=|A|−|N(A)| and for a⩽|X|, define φ(a)=max{φ(A) | A⊆X, |A|=a}. The graph G is said to have the strong Hall property if φ(a)+φ(b)⩽|X|−|Y| for all nonnegative integers a and b with a+b⩽|X|. We shall prove that any unimodal and self-dual poset with the strong Hall property is a symmetric chain order. This result will also be used to show that the inversion poset S5 is a symmetric chain order.
Keywords :
Strong Hall property , Hallיs condition , Symmetric chain orders , Bipartite matching
Journal title :
Discrete Mathematics
Serial Year :
1999
Journal title :
Discrete Mathematics
Record number :
950857
Link To Document :
بازگشت