Title of article :
A class of ‘matching-equivalent’ bipartite graphs Original Research Article
Author/Authors :
C.R. Pranesachar، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1999
Pages :
7
From page :
207
To page :
213
Abstract :
Two bipartite graphs G1=(V1=S1∪̇T1,E1) and G2=(V2=S2∪̇T2,E2) in which there are no isolated points and in which the cardinalities of the ‘upper’ sets are equal, that is, |S1|=|S2|=n (say), are said to be matching-equivalent if and only if the number of r-matchings (i.e., the number of ways in which r disjoint edges can be chosen) is the same for each of the graphs G1 and G2 for each r, 1⩽r⩽n. We show that the number of bipartite graphs that are matching-equivalent to Kn, n, the complete bipartite graph of order (n,n) is 2n−1 subject to an inclusion condition on the sets of neighbors vertices of the ‘upper set’. The proof involves adding an arbitrary number of vertices to the ‘lower’ set which are neighbors to all the vertices in the upper set and then analyzing the ‘modified’ rook polynomial that is specially defined for the purpose of the proof.
Keywords :
Modified rook polynomial , Matching-equivalent bipartite graphs , r-matchings
Journal title :
Discrete Mathematics
Serial Year :
1999
Journal title :
Discrete Mathematics
Record number :
950860
Link To Document :
بازگشت