Title of article :
Construction of complete sets of mutually equiorthogonal frequency hypercubes Original Research Article
Author/Authors :
Ilene H. Morgan، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1998
Pages :
15
From page :
237
To page :
251
Abstract :
Equiorthogonal frequency hypercubes are one particular generalization of orthogonal latin squares. It has been shown previously that a set of mutually equiorthogonal frequency hypercubes (MEFH) of order n and dimension d, using m distinct symbols, can have at most (n − 1)d/(m − 1) hypercubes. In this article, we show that this upper bound is sharp in certain cases by constructing complete sets of (n − 1)d/(m − 1) MEFH for two classes of parameters. In one of these classes, m is a prime power and n is a power of m. In the other, m = 2 and n = 4t, provided that there exists a Hadamard matrix of order 4t. In both classes, the dimension d is arbitrary. We also provide a Kronecker product construction which can be used to yield sets of MEFH in which the order is not a prime power.
Journal title :
Discrete Mathematics
Serial Year :
1998
Journal title :
Discrete Mathematics
Record number :
951056
Link To Document :
بازگشت