Title of article :
The basis number of the powers of the complete graph Original Research Article
Author/Authors :
Salar Y. Alsardary، نويسنده , , JERZY WOJCIECHOWSKI، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1998
Pages :
13
From page :
13
To page :
25
Abstract :
A basis of the cycle space C(G) of a graph G is h-fold if each edge of G occurs in at most h cycles of the basis. The basis number b(G) of G is the least integer h such that C(G) has an h-fold basis. MacLane (1937) showed that a graph G is planar if and only if b(G)⩽2. Schmeichel (1981) proved that b(Kn)⩽3, and Banks and Schmeichel (1982) proved that b(K2d)⩽4 where K2d is the d-dimensional hypercube. We show that b(Knd)⩽9 for any n and d, where Knd is the cartesian dth power of the complete graph Kn.
Journal title :
Discrete Mathematics
Serial Year :
1998
Journal title :
Discrete Mathematics
Record number :
951091
Link To Document :
بازگشت