Title of article :
On universal graphs for planar oriented graphs of a given girth Original Research Article
Author/Authors :
O.V. Borodin، نويسنده , , A.V. Kostochka، نويسنده , , J. Ne?et?il، نويسنده , , A. Raspaud، نويسنده , , E. Sopena، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1998
Abstract :
The oriented chromatic number o(H) of an oriented graph H is defined to be the minimum order of an oriented graph H′ such that H has a homomorphism to H′. If each graph in a class K has a homomorphism to the same H′, then H′ is K -universal. Let Pk denote the class of orientations of planar graphs with girth at least k. Clearly, P3 ⊃ P4 ⊃ P5… We discuss the existence of Pk-universal graphs with special properties. It is known (see Raspaud and Sopena, 1994) that there exists a P3-universal graph on 80 vertices. We prove here that
1.
(1) there exist no planar P4-universal graphs;
2.
(2) there exists a planar P16-universal graph on 6 vertices;
3.
(3) for any k, there exist no planar Pk-universal graphs of girth at least 6;
4.
(4) for any k, there exists a P40k-universal graph of girth at least k + 1
Journal title :
Discrete Mathematics
Journal title :
Discrete Mathematics