Title of article :
Split semiorders Original Research Article
Author/Authors :
Peter C. Fishburn، نويسنده , , William T. Trotter، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1999
Pages :
16
From page :
111
To page :
126
Abstract :
A poset P = (X, ≺) is a split semiorder if there are maps a, f : X → R with a(x) ⩽ f(x) ⩽ a(x) + 1 for every x ϵ X such that x ≺ y if and only if f(x) < a(y) and a(x) + 1 < f(y). A split interval order is defined similarly with a(x) + 1 replaced by b(x), a(x) ⩽ f(x) ⩽ b(x), such that x ≺ y if and only if f(x) < a(y) and b(x) < f(y). We investigate these generalizations of semiorders and interval orders through aspects of their numerical representations, three notions of poset dimensionality, minimal forbidden posets, and inclusion relationships to other classes of posets, including several types of tolerance orders.
Keywords :
Split semiorder , Poset dimension , Tolerance order , Interval order
Journal title :
Discrete Mathematics
Serial Year :
1999
Journal title :
Discrete Mathematics
Record number :
951270
Link To Document :
بازگشت