Abstract :
Let G be a graph and let D1(G) be the set of vertices of degree 1 in G. Veldman (1994) proves the following conjecture from Benhocine et al. (1986) that if G − D1(G) is a 2-edge-connected simple graph with n vertices and if for every edge xy ∈ E(G), d(x) + d(y) > (2n)/5 − 2, then for n large, L(G), the line graph of G, is hamiltonian. We shall show the following improvement of this theorem: if G − D1(G) is a 2-edge-connected simple graph with n vertices and if for every edge xy ∈ E(G), max[;d(x), d(y)] ⩾ n/5 − 1, then for n large, L(G) is hamiltonian with the exception of a class of well characterized graphs. Our result implies Veldmanʹs theorem.