Title of article :
Eulerian subgraphs containing given vertices and hamiltonian line graphs Original Research Article
Author/Authors :
Hongjian Lai، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1998
Pages :
15
From page :
93
To page :
107
Abstract :
Let G be a graph and let D1(G) be the set of vertices of degree 1 in G. Veldman (1994) proves the following conjecture from Benhocine et al. (1986) that if G − D1(G) is a 2-edge-connected simple graph with n vertices and if for every edge xy ∈ E(G), d(x) + d(y) > (2n)/5 − 2, then for n large, L(G), the line graph of G, is hamiltonian. We shall show the following improvement of this theorem: if G − D1(G) is a 2-edge-connected simple graph with n vertices and if for every edge xy ∈ E(G), max[;d(x), d(y)] ⩾ n/5 − 1, then for n large, L(G) is hamiltonian with the exception of a class of well characterized graphs. Our result implies Veldmanʹs theorem.
Journal title :
Discrete Mathematics
Serial Year :
1998
Journal title :
Discrete Mathematics
Record number :
951316
Link To Document :
بازگشت