Title of article :
Chromatic equivalence classes of certain generalized polygon trees Original Research Article
Author/Authors :
Yeehock Peng، نويسنده , , C.H.C. Little، نويسنده , , K.L. Teo، نويسنده , , H. Wang، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1997
Pages :
12
From page :
103
To page :
114
Abstract :
Let P(G) denote the chromatic polynomial of a graph G. Two graphs G and H are chromatically equivalent, written G ∼ H, if P(G) = P(H). Let g denote the family of all generalized polygon trees with three interior regions. Xu (1994) showed that g is a union of chromatic equivalence classes under the equivalence relation ‘∼’. In this paper, we determine infinitely many chromatic equivalence classes in g under ‘∼’. As a byproduct, we obtain a family of chromatically unique graphs established by Peng (1995).
Journal title :
Discrete Mathematics
Serial Year :
1997
Journal title :
Discrete Mathematics
Record number :
951561
Link To Document :
بازگشت