Title of article :
The deposition and erosion of cohesive sediments determined by a multi-class model
Author/Authors :
O. El Ganaoui، نويسنده , , E. Schaaff، نويسنده , , P. Boyer، نويسنده , , M. Amielh، نويسنده , , F. Anselmet، نويسنده , , C. Grenz، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Abstract :
Sediment properties were studied experimentally using a laboratory flume and sediments sampled from both fresh and saltwater
systems, i.e. the Rhoˆ ne River and the adjacent continental shelf (Golfe du Lion, Mediterranean Sea). An experimental protocol is
proposed which includes the development of an analytical method based on a multi-class model in order to determine the erosion
and deposition fluxes of these sediments. This approach highlights the presence of a ‘‘fluff layer’’ characterized by a very low critical
erosion shear stress and a second layer with a significantly larger critical erosion shear stress. If a global model is used, i.e. only one
class of particles is considered, this distinction between the two layers cannot be made as sediment parameters are identified for the
whole eroded particles including the ‘‘fluff layer’’.
Critical shear stresses of erosion were 0.05, 0.04 and 0.025 Nm 2, respectively, for the first class of particles eroded at Rhoˆ ne 1,
Rhoˆ ne 2 and SOFI stations. The second class of particles showed critical shear stress 10–20 times higher, around 0.20 Nm 2. The
use of the multi-class model allowed estimation of the erosion rates in the order of 2:5!10 6, 6:2!10 5 and 2!10 6 kgm 2 s 1
for Rhoˆ ne 1, Rhoˆ ne 2 and SOFI. Settling velocities were in the order of 0.012–0.045 mms 1 for the first class and between 0.05 and
0.09 mms 1 for the second class.
For the river experiments, it is shown that the ‘‘fluff layer’’, corresponding to the first class of particles being eroded, is mainly
representative of recent deposits of suspended particles probably trapped in the overlying water column during sediment sampling.
This highlights the difficulties in sampling sediments and transporting these from field to lab and more generally into flumes, and the
limits of applying a global model to flume experiments when studying sediment properties.
Keywords :
Cohesive Sediment , erosion fluxe , laboratory flume , deposition fluxe , fluff layer
Journal title :
Estuarine, Coastal and Shelf Science
Journal title :
Estuarine, Coastal and Shelf Science