Title of article :
An efficient chemical systems modelling approach1
Author/Authors :
K.-Y. Wang a، نويسنده , , ?، نويسنده , , D.E. Shallcross، نويسنده , , P. Hadjinicolaou، نويسنده , , C. GIANNAKOPOULOS، نويسنده ,
Issue Information :
ماهنامه با شماره پیاپی سال 2002
Abstract :
Systems of stiff chemical reactions are often associated with atmospheric chemistry modelling, which plays a very important
role in the studies of stratospheric ozone depletion, tropospheric air pollution problems, and future chemistry-climate feedbacks
and interactions. This paper revisits an open-source stiff system solver SVODE and presents its efficient use in modelling different
levels of complexity of a range of chemical systems. The chemical systems discussed here are the Lotka–Volterra (predator–prey)
model, the Brusselator model, the Oregonator model, and the Lorenz model. The first two models consist of two variables, while
the remaining two models consist of three variables. Finally, an application of this modelling approach to a generalised organic/NOx
mechanism for characterising air pollution development is presented. Since the SVODE is an open-source code, and the simulations
were run on a Linux PC (with g77 compiler), all results discussed in this paper can be easily reproduced. Most importantly, the
approach shown here can be readily extended to other larger scale applications such as the three-dimensional air pollution modelling.
Keywords :
Lotka–Volterra , Brusselator , Oregonator , Air pollution , Lorenz model , SVODE
Journal title :
Environmental Modelling and Software
Journal title :
Environmental Modelling and Software