Title of article :
Phase and amplitude of ecosystem carbon release and uptake potentials as derived from FLUXNET measurements
Author/Authors :
Eva Falge، نويسنده , , John Tenhunen، نويسنده , , Dennis Baldocchi، نويسنده , , Marc Aubinet، نويسنده , , Peter Bakwin، نويسنده , , Paul Berbigier، نويسنده , , CHRISTIAN BERNHOFER، نويسنده , , Jean-Marc Bonnefond، نويسنده , , George Burba، نويسنده , , Robert Clément، نويسنده , , Kenneth J Davis، نويسنده , , Jan A Elbers، نويسنده , , Matthias Falk، نويسنده , , Allen H Goldstein، نويسنده , , By ACHIM GRELLE، نويسنده , , André Granier، نويسنده , , Thomas Grunwald، نويسنده , , J?n Gu?mundsson، نويسنده , , David Hollinger، نويسنده , , Ivan A. Janssens ، نويسنده , , et al.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2002
Pages :
21
From page :
75
To page :
95
Abstract :
As length and timing of the growing season are major factors explaining differences in carbon exchange of ecosystems, we analyzed seasonal patterns of net ecosystem carbon exchange (FNEE) using eddy covariance data of the FLUXNET data base (http://www-eosdis.ornl.gov/FLUXNET). The study included boreal and temperate, deciduous and coniferous forests, Mediterranean evergreen systems, rainforest, native and managed temperate grasslands, tundra, and C3 and C4 crops. Generalization of seasonal patterns are useful for identifying functional vegetation types for global dynamic vegetation models, as well as for global inversion studies, and can help improve phenological modules in SVAT or biogeochemical models. The results of this study have important validation potential for global carbon cycle modeling. The phasing of respiratory and assimilatory capacity differed within forest types: for temperate coniferous forests seasonal uptake and release capacities are in phase, for temperate deciduous and boreal coniferous forests, release was delayed compared to uptake. According to seasonal pattern of maximum nighttime release (evaluated over 15-day periods, Fmax) the study sites can be grouped in four classes: (1) boreal and high altitude conifers and grasslands; (2) temperate deciduous and temperate conifers; (3) tundra and crops; (4) evergreen Mediterranean and tropical forests. Similar results are found for maximum daytime uptake (Fmin) and the integral net carbon flux, but temperate deciduous forests fall into class 1. For forests, seasonal amplitudes of Fmax and Fmin increased in the order tropicalC3-crops>temperate deciduous forests>temperate conifers>boreal conifers>tundra ecosystems. Due to data restrictions, our analysis centered mainly on Northern Hemisphere temperate and boreal forest ecosystems. Grasslands, crops, Mediterranean ecosystems, and rainforests are under-represented, as are savanna systems, wooded grassland, shrubland, or year-round measurements in tundra systems. For regional or global estimates of carbon sequestration potentials, future investigations of eddy covariance should expand in these systems.
Keywords :
Growing season length , Net ecosystem CO2 exchange , FLUXNET , EUROFLUX , Eddy covariance , AmeriFlux
Journal title :
Agricultural and Forest Meteorology
Serial Year :
2002
Journal title :
Agricultural and Forest Meteorology
Record number :
959216
Link To Document :
بازگشت