Title of article :
Application of chaotic ant swarm optimization in electric load forecasting
Author/Authors :
Wei-Chiang Hong، نويسنده ,
Issue Information :
ماهنامه با شماره پیاپی سال 2010
Pages :
10
From page :
5830
To page :
5839
Abstract :
Support vector regression (SVR) had revealed strong potential in accurate electric load forecasting, particularly by employing effective evolutionary algorithms to determine suitable values of its three parameters. Based on previous research results, however, these employed evolutionary algorithms themselves have several drawbacks, such as converging prematurely, reaching slowly the global optimal solution, and trapping into a local optimum. This investigation presents an SVR-based electric load forecasting model that applied a novel algorithm, namely chaotic ant swarm optimization (CAS), to improve the forecasting performance by searching its suitable parameters combination. The proposed CAS combines with the chaotic behavior of single ant and self-organization behavior of ant colony in the foraging process to overcome premature local optimum. The empirical results indicate that the SVR model with CAS (SVRCAS) results in better forecasting performance than the other alternative methods, namely SVRCPSO (SVR with chaotic PSO), SVRCGA (SVR with chaotic GA), regression model, and ANN model.
Keywords :
Support vector regression (SVR) , Chaotic ant swarm optimization (CAS) , Electric load forecasting
Journal title :
Energy Policy
Serial Year :
2010
Journal title :
Energy Policy
Record number :
970054
Link To Document :
بازگشت