Title of article :
Characteristics of submicron emulsions prepared by ultra-high pressure homogenisation: Effect of chilled or frozen storage
Author/Authors :
M. Cortés-Mu?oz، نويسنده , , D. Chevalier-Lucia، نويسنده , , E. Dumay، نويسنده ,
Issue Information :
ماهنامه با شماره پیاپی سال 2009
Abstract :
Model O/W pre-emulsions at an initial temperature of 24 °C and pH 6.3, and containing (w/w) 4.3% whey proteins plus 15, 30 or 45% peanut oil were processed using a ∼15 L/h homogeniser with a high pressure (HP) valve immediately followed by cooling heat exchangers. The effect of ultra-high pressure homogenisation (UHPH) between 100 and 300 MPa (P1) or of recycling (1–3 homogenisation passes) at 200 MPa was investigated on the droplet size distribution, size indices and viscosity. Fluid temperatures were measured at the inlet (T1) and outlet (T2) of the HP-valve, and after immediate cooling downstream of the HP-valve (T3) as they varied throughout UHPH. Short-life heating phenomena and mechanical energy involved in droplet processing were clearly influenced by emulsion composition. Oil droplet diameters decreased when (P1) increased from 100 to 300 MPa leading to submicron droplets at ≥200 MPa. Monomodal distributions with droplets well below 0.3 μm were obtained after recycling at 200 MPa for the three oil contents, with a peak at 138 nm (distribution in volume) or 60–70 nm (in number frequency). The emulsion behaviour varied from fluid (and quite Newtonian) to thick (and shear thinning) depending on the droplet size reduction and the oil volume fraction. Emulsions displayed an excellent stability vs. creaming and coalescence after 9 d storage at 5 °C. Freezing followed by 13 d storage at −24 °C then thawing, induced an increase in particle sizes depending both on the oil volume fraction and (P1). After UHPH at 200–225 MPa (±recycling), the freezing/thawing process maintained most of oil droplet size below 1 μm at 15% (w/w) oil, and induced mainly oil droplet aggregation through SDS-labile interactions at higher oil contents.
Keywords :
Dynamic high pressure , Whey proteins , Ultra-high pressure homogenisation , Droplet size determination , Emulsion viscosity , Cold storage of emulsions , Submicron emulsions
Journal title :
Food Hydrocolloids
Journal title :
Food Hydrocolloids