Title of article :
Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata Original Research Article
Author/Authors :
Villem Aruoja، نويسنده , , Henri-Charles Dubourguier، نويسنده , , Kaja Kasemets، نويسنده , , Anne Kahru، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2009
Abstract :
Toxicities of ZnO, TiO2 and CuO nanoparticles to Pseudokirchneriella subcapitata were determined using OECD 201 algal growth inhibition test taking in account potential shading of light. The results showed that the shading effect by nanoparticles was negligible. ZnO nanoparticles were most toxic followed by nano CuO and nano TiO2. The toxicities of bulk and nano ZnO particles were both similar to that of ZnSO4 (72 h EC50 ~ 0.04 mg Zn/l). Thus, in this low concentration range the toxicity was attributed solely to solubilized Zn2+ ions. Bulk TiO2 (EC50 = 35.9 mg Ti/l) and bulk CuO (EC50 = 11.55 mg Cu/l) were less toxic than their nano formulations (EC50 = 5.83 mg Ti/l and 0.71 mg Cu/l). NOEC (no-observed-effect-concentrations) that may be used for risk assessment purposes for bulk and nano ZnO did not differ (~ 0.02 mg Zn/l). NOEC for nano CuO was 0.42 mg Cu/l and for bulk CuO 8.03 mg Cu/l. For nano TiO2 the NOEC was 0.98 mg Ti/l and for bulk TiO2 10.1 mg Ti/l. Nano TiO2 formed characteristic aggregates entrapping algal cells that may contribute to the toxic effect of nano TiO2 to algae. At 72 h EC50 values of nano CuO and CuO, 25% of copper from nano CuO was bioavailable and only 0.18% of copper from bulk CuO. Thus, according to recombinant bacterial and yeast Cu-sensors, copper from nano CuO was 141-fold more bioavailable than from bulk CuO. Also, toxic effects of Cu oxides to algae were due to bioavailable copper ions.
Keywords :
Algae , Solubility , aggregation , Recombinant microbial sensors , Bioavailability , Growth inhibition , Shading of light
Journal title :
Science of the Total Environment
Journal title :
Science of the Total Environment