Author/Authors :
Jo Ellen Hinck a، نويسنده , , ?، نويسنده , , Christopher J. Schmitt، نويسنده , , Vicki S. Blazer b، نويسنده , , Nancy D. Denslow، نويسنده , ,
Timothy M. Bartish d، نويسنده , , Patrick J. Anderson d، نويسنده , , James J. Coyle d، نويسنده , , Gail M. Dethloff، نويسنده , , Donald E. Tillitt، نويسنده ,
Abstract :
Fish were collected from 16 sites on rivers in the Columbia River Basin (CRB) from September 1997 to April 1998 to
document temporal and spatial trends in the concentrations of accumulative contaminants and to assess contaminant effects on the
fish. Sites were located on the mainstem of the Columbia River and on the Snake, Willamette, Yakima, Salmon, and Flathead
Rivers. Common carp (Cyprinus carpio), black bass (Micropterus sp.), and largescale sucker (Catostomus macrocheilus) were the
targeted species. Fish were field-examined for external and internal lesions, selected organs were weighed to compute somatic
indices, and tissue and fluid samples were preserved for fish health and reproductive biomarker analyses. Composite samples of
whole fish, grouped by species and gender, from each site were analyzed for organochlorine and elemental contaminants using
instrumental methods and for 2,3,7,8-tetrachloro dibenzo-p-dioxin-like activity (TCDD-EQ) using the H4IIE rat hepatoma cell
bioassay. Overall, pesticide concentrations were greatest in fish from lower CRB sites and elemental concentrations were greatest in
fish from upper CRB sites. These patterns reflected land uses. Lead (Pb) concentrations in fish from the Columbia River at
Northport and Grand Coulee, Washington (WA) exceeded fish and wildlife toxicity thresholds (N0.4 μg/g). Selenium (Se)
concentrations in fish from the Salmon River at Riggins, Idaho (ID), the Columbia River at Vernita Bridge, WA, and the Yakima
River at Granger, WA exceeded toxicity thresholds for piscivorous wildlife (N0.6 μg/g). Mercury (Hg) concentrations in fish were
elevated throughout the basin but were greatest (N0.4 μg/g) in predatory fish from the Salmon River at Riggins, ID, the Yakima
River at Granger, WA, and the Columbia River at Warrendale, Oregon (OR). Residues of p,p′-DDE were greatest (N0.8 μg/g) in
fish from agricultural areas of the Snake, Yakima, and Columbia River basins but were not detected in upper CRB fish. Other
organochlorine pesticides did not exceed toxicity thresholds in fish or were detected infrequently. Total polychlorinated biphenyls
(PCBs; N0.11 μg/g) and TCDD-EQs (N5 pg/g) exceeded wildlife guidelines in fish from the middle and lower CRB, and
ethoxyresorufin O-deethylase (EROD) activity was also elevated at many of the same sites. Temporal trend analysis indicated
decreasing or stable concentrations of Pb, Se, Hg, p,p′-DDE, and PCBs at most sites where historical data were available. Altered
biomarkers were noted in fish throughout the CRB. Fish from some stations had responded to chronic contaminant exposure as indicated by fish health and reproductive biomarker results. Although most fish from some sites had grossly visible external or
internal lesions, histopathological analysis determined these to be inflammatory responses associated with helminth or
myxosporidian parasites. Many largescale sucker from the Columbia River at Northport and Grand Coulee, WA had external
lesions and enlarged spleens, which were likely associated with infections. Intersex male smallmouth bass (Micropterus dolomieu)
were found in the Snake River at Lewiston, ID and the Columbia River at Warrendale, OR. Male bass, carp, and largescale sucker
containing low concentrations of vitellogenin were common in the CRB, and comparatively high concentrations (N0.3 mg/mL)
were measured in male fish from the Flathead River at Creston, Montana, the Snake River at Ice Harbor Dam, WA, and the
Columbia River at Vernita Bridge, WA and Warrendale, OR. Results from our study and other investigations indicate that
continued monitoring in the CRB is warranted to identify consistently degraded sites and those with emerging problems.
Keywords :
Health assessmentindex (HAI) , biomarkers , Ovotestis , mercury , vitellogenin , Selenium , pesticides , Ethoxyresorufin O-deethylase (EROD) activity , lead , Organochlorine chemicals