Title of article :
Accumulation of mercury, selenium and their binding proteins in
porcine kidney and liver from mercury-exposed areas with the
investigation of their redox responses
Author/Authors :
Chunying Chen، نويسنده , , ?، نويسنده , , Liya Qu، نويسنده , , Jiujiang Zhao a، نويسنده , , Shuiping Liu c، نويسنده , , Guilong Deng a، نويسنده , ,
Bai Li a، نويسنده , , Peiqun Zhang a، نويسنده , , Zhifang Chai، نويسنده ,
Issue Information :
هفته نامه با شماره پیاپی سال 2006
Abstract :
The subcellular localization of Se and Hg and their cytosolic binding proteins, including cellular oxidative status, in porcine
liver and kidney have been studied by using samples from a chronic Hg-contaminated area and a non-Hg-contaminated area.
Coaccumulation and redistribution of Se and Hg in subcellular fractions due to mercury exposure were found. The Hg and Se
concentrations in tissues from Hg-exposed porcine were 80 folds and 5–20 folds higher than controls, respectively. Insterestingly,
the retention of both Se and Hg increased 10% in mitochondria, while decreased 10% in cytosol of Hg-exposed pig liver. Mercury
was mainly in the form of MTs in the cytosol of the non-Hg-exposed porcine kidney. MT binds Hg in the cytosol with limited
capacity, and the rest Hg was redistributed to the high molecular weight (MW) proteins (80–100 kDa) in the Hg-exposed group.
The coaccumulation of Hg and Se was also found in high MW proteins, where their molar ratio was tended to be 1: 1. Moreover,
the Se-containing polypeptides (3–6 kDa) increased significantly both in hepatic and renal cytosol of the Hg-exposed pigs. Sedependent
GSH-Px and SOD activity were increased to cope with Hg-induced oxidative stress. In previous studies, the roles of Se
and MTs were generally taken into account separately; we discussed their combining roles in the case of high Hg exposure. The
present results were beneficial to understand the existing states of Hg in vivo and evaluate the interaction of toxic and essential
elements.
Keywords :
Redox status , Metallothionein , liver , mercury , selenium , kidney
Journal title :
Science of the Total Environment
Journal title :
Science of the Total Environment