Title of article :
In vitro estimates of bioaccessible nickel in field-contaminated soils, and comparison with in vivo measurement of bioavailability and identification of mineralogy Original Research Article
Author/Authors :
Luba Vasiluk، نويسنده , , Michael D. Dutton، نويسنده , , Beverley Hale، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2011
Abstract :
This study determined nickel (Ni) bioaccessibility in weathered smelter-contaminated soils, separately for particle-sized fractions using two in vitro methods: simulated gastrointestinal digestion (PBET) and PBET followed by absorption by Caco-2 cells. Relative bioavailability of Ni in soils was determined in vivo using rats, validating in vitro estimates; a mineralogical basis of variation in bioavailability/bioaccessibility among soils was explored. In vitro assays identified the same difference in bioaccessibility for Ni among particle size fractions. PBET estimates were more precise, thus likely to be more useful in discerning differences among soils. In vivo bioavailability for Ni was below limit of detection for the small soil particles, and 31% and 56% for the larger particles. The relative bioavailability calculated from this work suggests that risk from ingesting Ni-contaminated soils could be overestimated by between 2- and 50-fold if the estimates of exposure are not adjusted for the lower bioavailability of weathered Ni originating from smelter emissions. The overestimation that would occur by using total Ni is greatest for the particle size that is most likely to adhere to the hands of children, demonstrating the importance of particle-size separation of soils for bioavailability determination and risk assessment.
Keywords :
Bioavailability , In vivo , metals , In vitro , Mineralogy
Journal title :
Science of the Total Environment
Journal title :
Science of the Total Environment