Title of article :
Trends in organic pollutants and lipids in juvenile Snake River spring Chinook salmon with different outmigrating histories through the Lower Snake and Middle Columbia Rivers Original Research Article
Author/Authors :
Mary R. Arkoosh، نويسنده , , Stacy Strickland، نويسنده , , Ahna Van Gaest، نويسنده , , Gina M. Ylitalo، نويسنده , , Lyndal Johnson، نويسنده , , Gladys K. Yanagida، نويسنده , , Tracy K. Collier، نويسنده , , Joseph P. Dietrich، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2011
Pages :
15
From page :
5086
To page :
5100
Abstract :
A three-year field study was conducted from 2006 to 2008 to monitor the spatial and temporal trends of organic pollutants in migrating juvenile Snake River spring Chinook salmon (Oncorhynchus tshawytscha) sampled from the Lower Snake and Middle Columbia River Basins. Specifically, hatchery-reared juvenile salmon were monitored as they navigated the Federal Columbia River Power System (FCRPS) by either transport barge (Barged) or remained in the river (In-River) from Lower Granite Dam to a terminal collection dam, either John Day Dam or Bonneville Dam. Levels of polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), and organochlorine (OC) pesticides were detected in the bodies of both In-River and Barged salmon during the 2006, 2007 and 2008 outmigrating season. At the terminal dam, In-River fish had greater concentrations of persistent organic pollutants POPs than Barged salmon. Of the POPs detected, dichlorodiphenyltrichloroethanes (DDTs) were found at the greatest concentrations in the salmon bodies. These elevated lipid-normalized concentrations in the In-River fish were due to lipid depletion in all years as well as increased exposure to POPs in some years as indicated by an increase in wet weight contaminant concentrations. Salmon were also exposed to polycyclic aromatic hydrocarbons (PAHs) as indicated by the phenanthrene (PHN) signal for biliary fluorescent aromatic compounds (FACs) at the hatcheries or prior to Lower Granite Dam. There were detectable levels of biliary FACs as fish migrated downstream or were barged to the terminal dam. Therefore, the potential exists for these organic pollutants and lipid levels to cause adverse effects and should be included as one of the variables to consider when examining the effects of the FCRPS on threatened and endangered juvenile salmon.
Keywords :
Persistent organic pollutants (PCBs and DDTs) , PAHs , Federal Columbia River Power System , Chinook , Lipids , Contaminants
Journal title :
Science of the Total Environment
Serial Year :
2011
Journal title :
Science of the Total Environment
Record number :
987853
Link To Document :
بازگشت