Author/Authors :
Lilienfein، Juliane نويسنده , , W. Wilcke، نويسنده ,
Abstract :
The expanding agriculture in the Brazilian savanna, the Cerrado, changes C and nutrient storages of the savanna ecosystems thereby affecting the global C budget and the sustainability of the local land use. We examined the biomass and the C, N, P, and S storages in above- and belowground biomass, in the organic layer, and in the top 2 m of the mineral soil (Anionic Acrustoxes) of three replicate plots of each of native Cerrado, Pinus caribaea Morelet plantations, productive and degraded Bracchiaria decumbens Stapf. pastures, and of conventional and no-tillage soybean cultivation. Aboveground biomass - in the cropping systems shortly before harvest - decreased in the order, Pinus (15 kg m^–2) > Cerrado (2.3) > conventional tillage (1.9) > no tillage (1.5) > productive pasture (0.64) > degraded pasture (0.37) and belowground biomass in the order, Pinus (9.1) > Cerrado (3.0) > productive pasture (2.2) > degraded pasture (1.5) > conventional tillage (0.60) > no tillage (0.41). The aboveground biomass contained 1.1 (degraded pasture) to 19% (Pinus) of the total C storage, 0.3 (productive pasture, degraded pasture) to 3.5% of the total N storage, 0.3 (degraded pasture) to 2.1% (no tillage, conventional tillage) of the total P storage, and 0.3 (degraded pasture) to 3.7% (Pinus) of the total S storage of the ecosystems. Total C storage in the ecosystems was significantly larger in the Pinus stands (36 kg m^–2) than in all other systems; differences among Cerrado (20), degraded pasture (19), productive pasture (20), no tillage (19), and conventional tillage (19) were small and not significant. All land-use systems had larger N (Pinus, 1.5; degraded pasture, 1.3; productive pasture, 1.4; no tillage, 1.4; conventional tillage, 1.4 kg m^–2) and S storage (PI, 28; degraded pasture, 33; productive pasture, 34; no tillage, 36; conventional tillage, 38 g m^–2) than the Cerrado (N, 1.2 kg; S, 26 g m^–2). The P storages varied between 17 and 29 g m^–2 and were not significantly different among the studied ecosystems. The N and S accumulations in the 1220-year-old land-use systems were larger than the cumulative known fertilizer inputs indicating that there were unknown inputs possibly including the exploration of the deeper subsoil by deepreaching roots and transfer of nutrients to the topsoil. Our results indicate that afforestation with Pinus trees has the potential to sequester large amounts of C while pasture degradation, no tillage, and conventional tillage tended to result in small C losses. Land use resulted in a marked accumulation of N and S relative to the Cerrado.
Keywords :
Oxisols , Pinus caribaea Morelet , Aboveground biomass , Cerrado , continuous cropping , root biomass , Pastures