Title of article :
An application of ARIMA model to predict submicron particle concentrations from meteorological factors at a busy roadside in Hangzhou, China Original Research Article
Author/Authors :
Le Jian، نويسنده , , Yun Zhao، نويسنده , , Yiping Zhu، نويسنده , , Mei-Bian Zhang، نويسنده , , Dean Bertolatti، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2012
Abstract :
In order to investigate the effect of meteorological factors on submicron particle (ultrafine particle (UFP) and particulate matter 1.0 (PM1.0)) concentrations under busy traffic conditions, a model study was conducted in Hangzhou, a city with a rapid increase of on-road vehicle fleet in China. A statistical model, Autoregressive Integrated Moving Average (ARIMA), was used for this purpose. ARIMA results indicated that barometric pressure and wind velocity were anti-correlated and temperature and relative humidity were positively correlated with UFP number concentrations and PM1.0 mass concentrations (p < 0.05). These data suggest that meteorological factors are significant predictors in forecasting roadside atmospheric concentrations of submicron particles. The findings provide baseline information on the potential effect of meteorological factors on UFP and PM1.0 levels on a busy viaduct with heavy traffic most of the day. This study also provides a framework that may be applied in future studies, with large scale time series data, to predict the impact of meteorological factors on submicron particle concentrations in fast-developing cities, in China.
Keywords :
Ultrafine particle , Particulate matter , ARIMA , Meteorological factors , Barometric pressure , China
Journal title :
Science of the Total Environment
Journal title :
Science of the Total Environment