Title of article :
ON A CONJECTURE OF WOOD
Author/Authors :
KAZUHIRO KAWAMURA، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2005
Pages :
0
From page :
1
To page :
0
Abstract :
We show that there exists a locally compact separable metrizable space L such that C(0)(L), the Banach space of all continuous complex-valued functions vanishing at infinity with the supremum norm, is almost transitive. Due to a result of Greim and Rajagopalan [3], this implies the existence of a locally compact Hausdorff space L such that C(0)(L) is transitive, disproving a conjecture of Wood [9]. We totally owe our construction to a topological characterization due to Sanches [8].
Keywords :
shift operator , inner function , model , Hilbert transform , subspace , Hardy space , admissible majorant
Journal title :
GLASGOW MATHEMATICAL JOURNAL
Serial Year :
2005
Journal title :
GLASGOW MATHEMATICAL JOURNAL
Record number :
99271
Link To Document :
بازگشت