Title of article :
INVARIANT RINGS OF ORTHOGONAL GROUPS OVER F2
Author/Authors :
H. KROPHOLLER، P. نويسنده , , MOHSENI RAJAEI، S. نويسنده , , J. SEGAL، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2005
Pages :
-6
From page :
7
To page :
0
Abstract :
We determine the rings of invariants S^G where S is the symmetric algebra on the dual of a vector space V over F2 and G is the orthogonal group preserving a non-singular quadratic form on V. The invariant ring is shown to have a presentation in which the difference between the number of generators and the number of relations is equal to the minimum possibility, namely dim V, and it is shown to be a complete intersection. In particular, the rings of invariants computed here are all Gorenstein and hence Cohen-Macaulay.
Keywords :
subspace , Hilbert transform , admissible majorant , model , Hardy space , inner function , shift operator
Journal title :
GLASGOW MATHEMATICAL JOURNAL
Serial Year :
2005
Journal title :
GLASGOW MATHEMATICAL JOURNAL
Record number :
99272
Link To Document :
بازگشت