Title of article :
Multivariate statistical analysis of time-of-flight secondary
ion mass spectrometry images using AXSIA
Author/Authors :
J.A. Tony Ohlhausen*، نويسنده , , M.R. Keenan، نويسنده , , P.G. Kotula، نويسنده , , D.E. Peebles، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Abstract :
Time-of-flight secondary ion mass spectrometry (TOF-SIMS) by its parallel nature, generates complex and very large datasets
quickly and easily. An example of such a large dataset is a spectral image where a complete spectrum is collected for each pixel.
Unfortunately, the large size of the data matrix involved makes it difficult to extract the chemical information from the data using
traditional techniques. Because time constraints prevent an analysis of every peak, prior knowledge is used to select the most
probable and significant peaks for evaluation. However, this approach may lead to a misinterpretation of the system under
analysis. Ideally, the complete spectral image would be used to provide a comprehensive, unbiased materials characterization
based on full spectral signatures.
Automated eXpert spectral image analysis (AXSIA) software developed at Sandia National Laboratories implements a
multivariate curve resolution technique that was originally developed for energy dispersive X-ray spectroscopy (EDS)
[Microsci. Microanal. 9 (2003) 1]. This paper will demonstrate the application of the method to TOF-SIMS. AXSIA distills
complex and very large spectral image datasets into a limited number of physically realizable and easily interpretable chemical
components, including both spectra and concentrations. The number of components derived during the analysis represents the
minimum number of components needed to completely describe the chemical information in the original dataset. Since full
spectral signatures are used to determine each component, an enhanced signal-to-noise is realized. The efficient statistical
aggregation of chemical information enables small and unexpected features to be automatically found without user intervention.
# 2004 Elsevier B.V. All rights reserved
Keywords :
statistical , AXSIA , ToF-SIMS , Components , MULTIVARIATE
Journal title :
Applied Surface Science
Journal title :
Applied Surface Science