كليدواژه :
همنشتي , مجموعه فازي , همريختي , رابطه اساسي , ايده آل فازي , حلقه اساسي , ابرساختارهاي جبري , ماتروييد , ابرگروه , رياضي و آمار
چكيده :
در فصل اين پژوهش ، تعريف ماتروييدها را در نظريه ابرساختارهاي جبري به كار برده و مفهوم ابرگروه ماتروييد كه حالت خاصي از ابرگروههاست معرفي مي شود. به ويژه وقتي كه ابرساختار}H { داراي 3 عضو باشد، تعداد كل ابر گروه ماتروييدها را به وسيله يك برنامه كامپيوتري محاسبه كرده و براي تعداد ابر گروه ماتروييدها عدد 18 به دست مي آيد. فصل دوم برخي از خواص همريختي ها و همنهشتي ها را برروي تيم ابر گروها مورد بررسي قرار مي دهد. اين خواص ابزارهاي مهمي در توصيف }Hv{ نيم گروهها هستند. در فصل سوم مثالهايي كه از ابرگروهها در شيمي ارايه مي شود اين مثالها مرتبط با واكنشهاي زنجيره اي است . در فصل چهارم حاصل ضرب بين }Hv{ ايده آلهاي فازي از }Hv{ حلقه ها معرفي مي شود. رابطه اساسي ... كوچكترين رابطه هم ارزي روي }Hv{ حلقه }R { به طوري كه خارج قسمت ... مجموعه همه كلاسهاي هم ارزي يك حلقه باشد را معرفي كرده و سپس خواص روابط اساسي و حلقه هاي اساسي را نسبت به }Hv{ ايده آلهاي فازي بيان مي نمايد.