شماره ركورد :
18262
عنوان به زبان ديگر :
Groups with soluble minimax conjugate classes of subgroups.
پديد آورندگان :
Russo Francesco نويسنده
از صفحه :
41
تا صفحه :
50
تعداد صفحه :
10
چكيده لاتين :
A classical result of Neumann characterizes the groups in which each subgroup has finitely many conjugates only as central-by-finite groups. If X is a class of groups, a group G is said to have X-conjugate classes of subgroups if G/coreG(NG(H)) (element of) X for each subgroup H of G. Here we study groups which have soluble minimax conjugate classes of subgroups,giving a description in terms of G/Z(G). We also characterize FC-groups which have soluble minimax conjugate classes of subgroups.
شماره مدرك :
1202230
لينک به اين مدرک :
بازگشت