پديد آورندگان :
Mohammadali, Haibat K. University of Tikrit - College of Education - Department of mathematics, Iraq
چكيده فارسي :
Let R be a commutative ring with identity, and M be a unitary Rmodule. A proper submodule N of an R-module M is called an essential if N ÇK ¹ (0) for each non-zero submodule K of M, and a proper submodule L of an R-module M is called semi-essential if L ÇP ¹ (0) for each non-zero prime submodule P of M, which is a generalization of essential submodules. In this paper we give another generalization of essential submodule, we call it a quasi-essential submodulei, where we call a proper submodule H of an R-module M a quasi-essential if H ÇQ ¹ (0)for each non-zero quasi-prime R-submodule Q of M . Every essential submodule is a quasi-essential submodule