شماره ركورد :
67250
عنوان مقاله :
An Efficient Method for Texture Feature Extraction and Recognition based on Contourlet Transform and Canonical Correlation Analysis
پديد آورندگان :
al-juboori, ali mohsin university of al-qadisiyah - college of computer science and information technology - multimedia department, Iraq
از صفحه :
498
تا صفحه :
511
چكيده فارسي :
Feature extraction is an important processing step in texture classification. For feature extraction in contourlet domain, statistical features for blocks of subband are computed. In this paper, we present an efficient feature vector extraction method for texture classification. For more discriminative feature a canonical correlation analysis method is propose for feature vector fused to the different sample of texture in the same cluster. The KNN (K-Nearest Neighbor) classifier is utilizing to perform texture classification.
كليدواژه :
Texture features , Contourlet transform , Canonical Correlation Analysis
عنوان نشريه :
مجله كليه التربيه: جامعه واسط
لينک به اين مدرک :
بازگشت