شماره ركورد كنفرانس :
144
عنوان مقاله :
Rule Selection by Guided Elitism Genetic Algorithm in Fuzzy Min-Max Classifier
پديدآورندگان :
Jalesiyan Hadis نويسنده , Akbarzadeh.T Mohammad.R نويسنده , Yaghubi Mahdi نويسنده
تعداد صفحه :
6
كليدواژه :
Rule extraction , Dimensionality reduction , Genetic algorithm (GA), , Guided Search (GS) , Fuzzy Min- Max Neural Network
عنوان كنفرانس :
مجموعه مقالات دوازدهمين كنفرانس سيستم هاي هوشمند ايران
زبان مدرك :
فارسی
چكيده فارسي :
Rule-based classification with Neural Networks has high acceptance ability for noisy data, high accuracy and is preferable in data mining. In this paper, we use Fuzzy Min- Max (FMM) Neural Network. Nevertheless the -Curse of Dimensionality- problem also exists in this classifier. As a possible solution, in this paper the modified GA is adopted to minimize the number of features in the extracted rules. “Guided Elitism” strategy is used to create elitism in the population, based on information extracted from good individuals of previous generations. The main advantage of this data structure is that it maintains partial information of good solutions, which may otherwise be lost in the selection process. Five well-known benchmark problems are used to evaluate the performance of the proposed GEGA system; Results shows comparatively high accuracy and generally lower computational time.
شماره مدرك كنفرانس :
3817034
سال انتشار :
2014
از صفحه :
1
تا صفحه :
6
سال انتشار :
0
لينک به اين مدرک :
بازگشت