شماره ركورد كنفرانس :
2727
عنوان مقاله :
Speech Enhancement Using the IBM Estimate in Real Environments
عنوان به زبان ديگر :
Speech Enhancement Using the IBM Estimate in Real Environments
پديدآورندگان :
Azizi Haydar نويسنده University of Tabriz - Faculty of Electrical & Computer Engineering
تعداد صفحه :
0
كليدواژه :
speech enhancement , IBM estimation , Noise and reverberation
سال انتشار :
1395
عنوان كنفرانس :
اولين كنفرانس بين المللي دستاوردهاي نوين پژوهشي در مهندسي برق و كامپيوتر
زبان مدرك :
فارسی
چكيده لاتين :
In this paper, we estimate ideal binary mask for speech enhancement in real environments contain both noise and reverberation. We try to remove noise and a part of reverberated speech signal using the various estimated IBMs to improve speech quantity and intelligibility. To estimate the three defined IBMs in real environments: IBM-DS, IBM-ER, and IBM-R are used the SVM classifier and the popular features: GFCC, PNCC, MFCC, and RASTAPLP. First for each mask the optimal LC is determined based on best results of STOI criterion then, are obtained the results of SNR-improvement and PESQ value. Overall, the simulated IBMs based on MFCC have the best PESQ results and GFCC-based have the best SNR-improvement rather than other features. It should be noted that for noises which include of speech signals the RASTAPLP has better SNRimprovement results.
شماره مدرك كنفرانس :
4240260
سال انتشار :
1395
سال انتشار :
1395
لينک به اين مدرک :
بازگشت