شماره ركورد كنفرانس :
144
عنوان مقاله :
Fingerprint Verification Based on STFT Analysis and Zernike Moments
پديدآورندگان :
Kazemzadeh Mahdieh نويسنده , Borumandnia Ali نويسنده
تعداد صفحه :
5
كليدواژه :
component , Fingerprint verification , feature extraction , STFT analysis , Zernike moments , K-NN classifiers
عنوان كنفرانس :
مجموعه مقالات دوازدهمين كنفرانس سيستم هاي هوشمند ايران
زبان مدرك :
فارسی
چكيده فارسي :
This paper presents a scheme of fingerprint verification based using Zernike invariant moments. In this study we uses an enhanced image-based fingerprint verification algorithm .It reduces multi-spectral noise by enhancing a fingerprint image to accurately and reliably determine a reference point, and then aligns the image according to the position and orientation of reference point to avoid time-consuming alignment. A set of fixed-length moment features, is extracted from tessellated cells on a region of interest (ROI) centered at the reference point. After determination the ROI, Zernike moments were computed from each block of ROI as the feature of fingerprint features. The similarity between an input and a template in a database is evaluated by K-NN classifier. The proposed scheme can improve performance of verification and is more robust with respect to the fingerprint image quality.
شماره مدرك كنفرانس :
3817034
سال انتشار :
2014
از صفحه :
1
تا صفحه :
5
سال انتشار :
0
لينک به اين مدرک :
بازگشت