شماره ركورد كنفرانس :
144
عنوان مقاله :
Nonlinear System Identification of Hammerstein- Wiener Model Using AWPSO
پديدآورندگان :
Talaie Sharareh نويسنده , Aliyari Shoorehdeli Mahdi نويسنده Electrical Engineering Department, Kh.N. Toosi University of Technology, Tehran, Iran , Shahmohamadi Leila نويسنده
كليدواژه :
Hammerstein-Wiener model , AWPSO , System identification , Nonlinear system
عنوان كنفرانس :
مجموعه مقالات دوازدهمين كنفرانس سيستم هاي هوشمند ايران
چكيده فارسي :
This paper presents the problem of constructing an
appropriate model with Hammerstein-Wiener structure for
nonlinear system identification. In this structure, the nonlinearity
is implemented through two static nonlinear blocks where a
linear dynamic block is surrounded by two nonlinear static
systems. Algorithms such as genetic algorithm can find unknown
parameters, but the complexity of the calculations is their
weakness. Hence, a class of computational methods named
Particle Swarm Optimization (PSO) is used. To avoid trapping in
local optimum and improve performance; Adaptive Weighted
Particle Swarm Optimization (AWPSO) method is used. The
training method is responsible for finding the optimal values of
the parameters of the transfer function from the linear dynamic
part as well as the coefficients of the nonlinear static functi
شماره مدرك كنفرانس :
3817034