شماره ركورد كنفرانس :
2804
عنوان مقاله :
Analysis of Key Parameters in Nearshore Current Using Artificial Neural Networks
پديدآورندگان :
Yeganeh Bakhtiary A نويسنده , Zeinali Majid نويسنده , Valipour Reza نويسنده Department of Urology, Shohada-Tajrish Hospital, Shahid Beheshti University, MC, Tehran , Yamashita Takao نويسنده
تعداد صفحه :
5
كليدواژه :
Feed Forward (FF) , Artificial neural network (ANN) , Root mean square (RMS)
عنوان كنفرانس :
هفتمين همايش بين المللي مهندسي سواحل .بنادر و سازه ه اي دريايي
زبان مدرك :
فارسی
چكيده فارسي :
Design of port and harbor facilities highly depends on the nearshore hydrodynamics. Usually, the significant wave characteristics along with the most severe condition of the nearshore currents based on the field measurements is considered for the design purpose. On the other hand, optimal measurement cost and accurate numerical estimation depends on some key parameters of current velocity. The main objective of present paper is to describe an approach to more accurate and effective prediction of current velocity through key parameterization of observed data based on Root Mean Square (RMS). The procedure has significantly improved by using artificial neural networks due to ANNʹs capability in high functioning with rapid computation to solve the high nonlinearity and multi-variables systems.
شماره مدرك كنفرانس :
1842083
سال انتشار :
1385
از صفحه :
1
تا صفحه :
5
سال انتشار :
0
لينک به اين مدرک :
بازگشت