شماره ركورد كنفرانس :
453
عنوان مقاله :
Improving nonmonotone trust-region methods
پديدآورندگان :
Amini K نويسنده Inland Waters Aquatics Stocks Research Center,Gorgan, Iran , Ahookhosh M نويسنده
كليدواژه :
Trust-region algorithms , Unconstrained optimization , Nonmonotone strategy
عنوان كنفرانس :
چهارمين كنفرانس بين المللي انجمن ايران تحقيق در عمليات
چكيده فارسي :
The trust-region family are one of the most important algorithms for solving unconstrained
nonlinear programming. It is well known that using of the nonmonotone strategy in this family can
improve the likelihood of finding the global optimum and the numerical performance. The traditional
nonmonotone strategy contains some disadvantages. In this paper, we introduce new nonmonotone
trust-region algorithm by incorporating a new nonmonotone strategy into the general trust-region
framework, while new nonmonotone strategy is a convex combination of the maximum function value
of some prior successful iterations with current function value. Under some classical assumptions, it is
proven that the new algorithm is global convergence. Preliminary numerical results are presented to
confirm efficiency of our approach
شماره مدرك كنفرانس :
1891451