شماره ركورد كنفرانس :
3222
عنوان مقاله :
Crane Control Via Parallel Distributed Fuzzy LQR Controller Using Genetic Fuzzy Rule Selection
پديدآورندگان :
Adeli M , Zarabadipour H , Aliyari Shoorehdeli M
كليدواژه :
parallel distributed compensation , Takagi_Sugeno fuzzy modeling , overhead crane , linear matrix inequality , Linear Quadratic Regulation , Genetic algorithm
سال انتشار :
دي 1390
عنوان كنفرانس :
دومين كنفرانس بين المللي كنترل، ابزار دقيق و اتوماسيون
زبان مدرك :
انگليسي
چكيده لاتين :
Overhead crane is an industrial structure that is widely used in many harbors and factories. It is usually operated manually or by some conventional control methods. In this paper, we propose a hybrid controller includes both position regulation and anti-swing control. According to Takagi-Sugeno fuzzy model of an overhead crane and genetic algorithm, a fuzzy controller is designed with parallel distributed compensation and Linear Quadratic Regulation. Using genetic algorithm, important fuzzy rules are selected and so the number of rules decreased and design procedure need less computation and its computation needs less time. Further, the stability of the overhead crane with the parallel distributed fuzzy LQR controller is discussed. The stability analysis and control design problems is reduced to linear matrix inequality (LMI) problems. Simulation results illustrated the validity of the proposed parallel distributed fuzzy LQR control method and it was compared with a similar method parallel distributed fuzzy controller with same fuzzy rule set.
كشور :
ايران
تعداد صفحه 2 :
6
از صفحه :
1
تا صفحه :
6
لينک به اين مدرک :
بازگشت