شماره ركورد كنفرانس :
3208
عنوان مقاله :
Adaptive Optimal Control via Reinforcement Learning for Omni-Directional Wheeled Robots
پديدآورندگان :
Sheikhlar, Arash Department of Electrical, Computer and Biomedical Engineering - Islamic Azad University Qazvin branch , Fakharian, Ahmad Department of Electrical, Computer and Biomedical Engineering - Islamic Azad University Qazvin branch
كليدواژه :
reinforcement learning , omni-directional robot , linear quadratic tracking control , optimal control , adaptive control
سال انتشار :
1394
عنوان كنفرانس :
چهارمين كنفرانس بين المللي كنترل، ابزار دقيق و اتوماسيون
زبان مدرك :
لاتين
چكيده لاتين :
The main problem of wheeled soccer robots is the low level controller gains regulation particularly in competition. The low level control task is tracking the desired angular velocities of the robot wheels which are generated by the high level controller. Since the robot’s model and environment have many uncertainties, traditional controller gains must be adjusted before every match along the competition. In this paper, a linear quadratic tracking (LQT) scheme is designed to solve this problem. The controller can regulate the parameters on-line by policy iteration reinforcement learning algorithm. The output paths of the four-wheeled soccer robot with the adaptive LQT are compared with traditional LQT and the results show that the proposed method can provide superior performance in presence of uncertainties and nonlinearities.
كشور :
ايران
تعداد صفحه 2 :
6
از صفحه :
1
تا صفحه :
6
لينک به اين مدرک :
بازگشت