شماره ركورد كنفرانس :
3376
عنوان مقاله :
AFTLP: A Comparative Analytical Framework for Temporal Link Prediction
Author/Authors :
Haghani, Sogol Department of Computer Engineering and Data Mining Laboratory Alzahra University , Keyvanpour, Mohammad Reza Department of Computer Engineering Alzahra University
كليدواژه :
Link Prediction , Dynamic Network , Graph , Benefits , Challenges
سال انتشار :
ارديبهشت 1397
عنوان كنفرانس :
چهارمين كنفرانس بين المللي وب پژوهي
زبان مدرك :
لاتين
چكيده لاتين :
Link prediction is an important task in many application domains. Widespread researches have been done to extract information from network's entities and relations. Temporal Link prediction is a task of predicting unseen links that will be formed in the future based on different snapshots of the network. This paper proposes a framework in which the concerns and challenges of temporal link prediction are discussed. All major and recent methodologies in temporal link prediction are classified. This presented classification is analyzed based on the discussed challenges. Accordingly, this framework provides an appropriate platform for comparing and analyzing different approaches and challenges, that will encourage future research in developing more powerful methods.
كشور :
ايران
تعداد صفحه 2 :
6
از صفحه :
1
تا صفحه :
6
لينک به اين مدرک :
بازگشت