شماره ركورد كنفرانس :
3364
عنوان مقاله :
Classifying web pages and documents based on expected cross entropy and weighted vote schema
Author/Authors :
Maide Abedini Bagha Young Researchers and Elite club - Tabriz Branch - Islamic Azad University , Farnaz Laylavi Department of computer Novin Institute of Higher Education - Ardabil , Rahman Faraji Bashir Islamic Azad University - sanandaj
كليدواژه :
classification , Support vector machine , Expected cross entropy , weighted vote
سال انتشار :
خرداد 1395
عنوان كنفرانس :
كنفرانس بين المللي پژوهش هاي نوين در علوم مهندسي
زبان مدرك :
انگليسي
چكيده لاتين :
Traditional information retrieved method use keywords occurring in determine the class of the documents and web pages, but usually retrieves unrelated web page and documents. We propose a web pages and documents scanning and classification method base on support vector machine and expected cross entropy and using a weighted vote schema. Experimental results indicate our method is more effective than traditional methods. Classification accuracy in proposed method is better than other methods and even with a small labeled training set, our method could achieve higher accuracy.
كشور :
ايران
تعداد صفحه 2 :
7
از صفحه :
1
تا صفحه :
7
لينک به اين مدرک :
بازگشت