شماره ركورد كنفرانس :
3297
عنوان مقاله :
Employing deep learning and sparse representation for data classification
عنوان به زبان ديگر :
Employing deep learning and sparse representation for data classification
پديدآورندگان :
Hazrati Fard Mehdi Department of Computer Science and Engineering Shiraz University , Hashemi Sattar Department of Computer Science and Engineering Shiraz University
كليدواژه :
Deep Learning , Autoencoder , Feature Extraction , Visual Classification , Sparse Representation
سال انتشار :
آبان 1396
عنوان كنفرانس :
نوزدهمين سمپوزيوم بين المللي هوش مصنوعي و پردازش سيگنال
چكيده لاتين :
Selecting a proper set of features with the best discrimination is always a challenge in classification. In this paper we propose a method, named GLLC (General Locally Linear Combination), to extract features using a deep autoencoder and reconstruct a sample based on other samples in a low dimensional space, then the class with minimum reconstruction error is selected as the winner. Extracting features along with the discrimination characteristic of the sparse model can create a robust classifier that shows simultaneous reduction of samples and features. Although the main application of GLLC is in the visual classification and face recognition, it can be used in other applications. We conduct extensive experiments to demonstrate that the proposed algorithm gain high accuracy on various datasets and outperforms the state-of-the-art methods.
كشور :
ايران
تعداد صفحه 2 :
5
از صفحه :
1
تا صفحه :
5
لينک به اين مدرک :
بازگشت