شماره ركورد كنفرانس :
3297
عنوان مقاله :
Face Verification in the Wild using Similarity in Representations
عنوان به زبان ديگر :
Face Verification in the Wild using Similarity in Representations
پديدآورندگان :
Miri Maliheh Electrical Engineering Department - Faculty of Engineering Higher Educational Complex of Saravan
كليدواژه :
dictionary selection , sparse representation-based classification , sparse representation , face verification
سال انتشار :
آبان 1396
عنوان كنفرانس :
نوزدهمين سمپوزيوم بين المللي هوش مصنوعي و پردازش سيگنال
چكيده لاتين :
In recent years, classification using sparse representation of signals has attracted much attention and has achieved satisfactory results compared to the conventional methods. In this paper, a classification method using sparse representation is proposed for face verification in Labeled Faces in the Wild (LFW) data. The LFW dataset involves high intraclass variations due to the uncontrolled imaging conditions. According to our experimental results, matched and mismatched pairs of the LFW data can be better classified using separate dictionaries for each image of the input pair.
كشور :
ايران
تعداد صفحه 2 :
5
از صفحه :
1
تا صفحه :
5
لينک به اين مدرک :
بازگشت