شماره ركورد كنفرانس :
3297
عنوان مقاله :
Face Verification in the Wild using Similarity in Representations
عنوان به زبان ديگر :
Face Verification in the Wild using Similarity in Representations
پديدآورندگان :
Miri Maliheh Electrical Engineering Department - Faculty of Engineering Higher Educational Complex of Saravan
كليدواژه :
dictionary selection , sparse representation-based classification , sparse representation , face verification
عنوان كنفرانس :
نوزدهمين سمپوزيوم بين المللي هوش مصنوعي و پردازش سيگنال
چكيده لاتين :
In recent years, classification using sparse
representation of signals has attracted much attention and has
achieved satisfactory results compared to the conventional
methods. In this paper, a classification method using sparse
representation is proposed for face verification in Labeled Faces
in the Wild (LFW) data. The LFW dataset involves high intraclass
variations due to the uncontrolled imaging conditions.
According to our experimental results, matched and mismatched
pairs of the LFW data can be better classified using separate
dictionaries for each image of the input pair.