شماره ركورد كنفرانس :
3360
عنوان مقاله :
ADDITIVE MAPS PRESERVING ELEMENTS ANNIHILATED BY THE POLYNOMIALS XY Y X and XY + Y X
Author/Authors :
ALI TAGHAVI Department of Mathematics - Faculty of Mathematical Sciences - University of Mazandaran , FARZANEH KOLIVAND Department of Mathematics - Faculty of Mathematical Sciences - University of Mazandaran
كليدواژه :
Hilbert space , additive map , zero of polynomials
عنوان كنفرانس :
چهارمين سمينار آناليز تابعي و كاربردهاي آن
چكيده لاتين :
Let H be a complex Hilbert space and B(H) denotes the algebra of all bounded linear operators on H. Suppose that
: B(H) ! B(H) is an additive surjective map. We prove that if satises (A)(P) = (P)(A) if and only if AP = PA
for 2 f1;1g and for all A and idempotent P in B(H), then is a *-automorphism