شماره ركورد كنفرانس :
3735
عنوان مقاله :
THE UNIT SUM NUMBER OF POTENT RINGS
پديدآورندگان :
Pouyan Neda neda.pouyan@gmail.com Shohadaye Hovaize University Of Technology
تعداد صفحه :
4
كليدواژه :
Unit sum number , Potent rings , Clean rings
سال انتشار :
1396
عنوان كنفرانس :
اولين كنفرانس منطقه اي علوم رياضي و كاربردها
زبان مدرك :
انگليسي
چكيده فارسي :
A ring R is said to be {I_{0}-}ring if each left ideal not contained in the Jacobson radical J(R) contains a non-zero idempotent. If, in addition, idempotents can be lifted modulo J(R), R is called an {I-}ring or potent rings. In this paper we prove that every element of a potent ring is a sum of two units if no factor ring of R is isomorphic to Z_2. So we answer to a conjecture of Ashish K. Srivastava [1] in affrimative. Finally we answer to an open problem of Henriksen [6] in the negative.
كشور :
ايران
لينک به اين مدرک :
بازگشت