شماره ركورد كنفرانس :
3806
عنوان مقاله :
On the automorphism group of Cayley graphs
پديدآورندگان :
Rahmani S Department of Mathematics, Faculty of Science, Shahid Rajaee, Teacher Training University, Tehran, 16785-136, Iran , Ghorbani M mghorbani@srttu.edu Department of Mathematics, Faculty of Science, Shahid Rajaee, Teacher Training University, Tehran, 16785-136, Iran
تعداد صفحه :
3
كليدواژه :
wreath product , normal edge , transitive Cayley graph , automorphism group
سال انتشار :
1396
عنوان كنفرانس :
دهمين كنفرانس ملي نظريه گراف و تركيبات جبري
زبان مدرك :
انگليسي
چكيده فارسي :
Let Cay(G; S) be a connected tetravalent Cayley graph. The Cayley graph X = Cay(G; S) is normal edge-transitive if normalizer of R(G) in X acts transitively on edges set. In this paper, we introduce some results regarding the automorphism group of Cayley graphs. For each prime non-equal 2, 5, the automorphism group of the Cayley graph Cay(G; S) on a regular p-group is the semi-direct product R(G) and Aut(G; S) where R(G) is the right regular representation of G and Aut(G; S) includes those permutation presentation of Aut(G) that fix the set S. Also we determine the structure of automorphism group of all tetravalent normal edge- transitive Cayley graphs of order pqr.
كشور :
ايران
لينک به اين مدرک :
بازگشت