شماره ركورد كنفرانس :
3806
عنوان مقاله :
On the spectrum of 2-type bicirculants
پديدآورندگان :
Arezoomand M arezoomand@lar.ac.ir University of Larestan, Larestan, Iran , Ashrafi A. R ashrafi@kashanu.ac.ir Department of Pure Mathematics, University of Kashan, Kashan, Iran
كليدواژه :
Semi , Cayley graph , Bicirculant , Generalized Peterson graph , Rose window graph , Tabačjn graph , Graph spectrum
عنوان كنفرانس :
دهمين كنفرانس ملي نظريه گراف و تركيبات جبري
چكيده فارسي :
A bicirculant is a semi-Cayley graph over a cyclic group. The vertex-set of a bicirculant has two parts and it has right-edges, left-edges and spoke-edges. These edges are completely determined by three subsets R, L and S of G, respectively. If |R| = |L| = 2, then Γ is called a 2-type bicirculant. The class of I-graphs (which contains the class of generalized Petersen graphs), rose window graphs and Tabačjn graphs are examples of 2-type bicirculants. In this talk, we give an exact formula for the eigenvalues of 2−type bicirculants.