شماره ركورد كنفرانس :
3835
عنوان مقاله :
RH WAVELET BASES TO APPROXIMATE SOLUTION OF NONLINEAR FREDHOLM - HAMMERSTEIN INTEGRAL EQUATIONS IN COMPLEX PLANE
پديدآورندگان :
Erfanian Majid Department of Science, School of Mathematical Sciences, University of Zabol, Zabol, Iran , Akrami Abbas Department of Science, School of Mathematical Sciences, University of Zabol, Zabol, Iran
كليدواژه :
Nonlinear integral equation , Rationalized Haar wavelet , Operational matrix , fixed point theorem , error analysis.
عنوان كنفرانس :
اولين كنفرانس بين المللي مديريت، نوآوري و توليد ملي
چكيده فارسي :
In this paper, we present a method for calculated the numerical approximation of nonlinear Fredholm - Volterra Hammerstein integral equation, which uses the properties of rationalized Haar wavelets. The main tool for error analysis is the Banach fixed point theorem. An upper bound for the error was obtained and the order of convergence is analyzed. An algorithm is presented to compute and illustrate the solutions for some numerical examples.