شماره ركورد كنفرانس
3860
عنوان مقاله
A Newton method for multiobjective optimization problems with interval-valued objective functions
پديدآورندگان
Ghaznavi M ghaznavi@shahroodut.ac.ir Shahrood University of Technology , Hoseinpoor N Shahrood University of Technology
تعداد صفحه
9
كليدواژه
Interval , valued multiobjective problem , Newton method , Pareto optimal solution , Generalized Hukuhara differentiability , Critical point
سال انتشار
1396
عنوان كنفرانس
دومين كنفرانس ملي محاسبات نرم
زبان مدرك
انگليسي
چكيده فارسي
In this study, we obtain (weak) Pareto optimal solutions of an unconstrained multiobjective optimization problem (MOP) with interval-valued objective functions by applying Newton method. We consider a suitable partial ordering for a pair of intervals for attaining Pareto solutions of the MOP problem. We employ the generalized Hukuhara differentiability of interval-valued vector functions to derive Newton method. It is assumed that the objective functions of the interval-valued MOP are twice continuously generalized Hukuhara differentiable. Therefore, utilizing critical points of the related crisp problem, some necessary and sufficient conditions for weakly Pareto optimal solutions of an interval-valued MOP are obtained.
كشور
ايران
لينک به اين مدرک