• شماره ركورد كنفرانس
    3860
  • عنوان مقاله

    A Newton method for multiobjective optimization problems with interval-valued objective functions

  • پديدآورندگان

    Ghaznavi M ghaznavi@shahroodut.ac.ir Shahrood University of Technology , Hoseinpoor N Shahrood University of Technology

  • تعداد صفحه
    9
  • كليدواژه
    Interval , valued multiobjective problem , Newton method , Pareto optimal solution , Generalized Hukuhara differentiability , Critical point
  • سال انتشار
    1396
  • عنوان كنفرانس
    دومين كنفرانس ملي محاسبات نرم
  • زبان مدرك
    انگليسي
  • چكيده فارسي
    In this study, we obtain (weak) Pareto optimal solutions of an unconstrained multiobjective optimization problem (MOP) with interval-valued objective functions by applying Newton method. We consider a suitable partial ordering for a pair of intervals for attaining Pareto solutions of the MOP problem. We employ the generalized Hukuhara differentiability of interval-valued vector functions to derive Newton method. It is assumed that the objective functions of the interval-valued MOP are twice continuously generalized Hukuhara differentiable. Therefore, utilizing critical points of the related crisp problem, some necessary and sufficient conditions for weakly Pareto optimal solutions of an interval-valued MOP are obtained.
  • كشور
    ايران