شماره ركورد كنفرانس :
3926
عنوان مقاله :
Domain Adaptive Multiple Kernel Learning for Handwritten Digit Recognition
پديدآورندگان :
Hosseinzadeh Hamidreza hr.hosseinzadeh@srbiau.ac.ir Department of Electrical and Computer Engineering Science and Research Branch, Islamic Azad University Tehran, Iran , Razzazi Farbod razzazi@srbiau.ac.ir Department of Electrical and Computer Engineering Science and Research Branch, Islamic Azad University Tehran, Iran
تعداد صفحه :
5
كليدواژه :
domain adaptation , multiple kernel learning , maximum mean discrepancy , support vector machine.
سال انتشار :
1395
عنوان كنفرانس :
بيست و چهارمين كنفرانس مهندسي برق ايران
زبان مدرك :
انگليسي
چكيده فارسي :
Handwritten character recognition systems suffers from different training and testing sets distributions. In this paper, we propose a two-step domain adaptive multiple kernel learning algorithm, which learns a kernel function based on several kernels in the first step, and trains a target classifier by applying the learned kernel in the second step. Our method can be employed both in semi-supervised and unsupervised domain adaptation cases, while most of the previous domain adaptation methods work only in semi-supervised case. Experiments on adaptation to different databases in this field reveal the superiority of this algorithm in comparison with other adaptation algorithms.
كشور :
ايران
لينک به اين مدرک :
بازگشت