شماره ركورد كنفرانس :
3926
عنوان مقاله :
Localization-based Visual Tracking with Convolutional Neural Networks
پديدآورندگان :
Moridi Abolfazl a.moridi@hotmail.com School of Electrical and Computer Engineering Shiraz University, Iran , Azimifar Zohreh azimifar@cse.shirazu.ac.ir School of Electrical and Computer Engineering Shiraz University, Iran
تعداد صفحه :
4
كليدواژه :
visual tracking , localization , convolutional network , deep learning
سال انتشار :
1395
عنوان كنفرانس :
بيست و چهارمين كنفرانس مهندسي برق ايران
زبان مدرك :
انگليسي
چكيده فارسي :
This paper presents a novel framework for the visual tracking problem. This framework predicts the exact location of the object using a regression. In this work, we first select an approximate region based on object location in the previous frame and then predict the exact location of the object in the current frame by a deep convolutional network that its last layer replaced with a regression. The entire network gets updated due to the occurrence of various challenges during the video. We evaluate our work using 8 challenging benchmark video sequences and shows a significant improvement over state-of-the-art approaches.
كشور :
ايران
لينک به اين مدرک :
بازگشت