شماره ركورد كنفرانس :
3926
عنوان مقاله :
Electrocardiogram Recognition Using Spectral Correlation Function
پديدآورندگان :
Mihandoost Sara s.mihandoost@urmia.ac.ir Ph.D student, IEEE student member Department of Electrical Engineering Urmia, Iran, 15311-57561 , Chehel Amirani Mehdi m.amirani@urmia.ac.ir Associated Prof, IEEE member Department of Electrical Engineering Urmia, Iran, 15311-57561
تعداد صفحه :
6
كليدواژه :
ECG signals , SCF , LDA, SVM classifier ,
سال انتشار :
1395
عنوان كنفرانس :
بيست و چهارمين كنفرانس مهندسي برق ايران
زبان مدرك :
انگليسي
چكيده فارسي :
In this paper, a new representation method for electrocardiogram (ECG) signals analysis is suggested. Th is representation scheme is based on the spectral correlation function (SCF) which appears hidden periodicity of signals. Th e SCF presents a second-order statistical description in the frequency domain and can be used for several applications of ECG analysis such as classification. Th e SCF of each ECG signal is computed by using an efficient computational algorithm, called the FFT accumulation method (FAM). Th en, the energy and standard deviations at different regions of bi-frequency plane of SCF are calculated as features. Afterwards, the features fed to a support vector machine (SVM) classifier for ECG classification. Th e obtained results indicate the efficiency of the new method in comparison with the previous studies.
كشور :
ايران
لينک به اين مدرک :
بازگشت