شماره ركورد كنفرانس :
3951
عنوان مقاله :
Suspended Sediment Analysis Based on Artificial Neural Network in Neka Basin
پديدآورندگان :
Solaimanii K. Solaimani2001@yahoo.co.uk Professor of watershed management, Sari University of Agricultural and Natural Resources , Shokrian F. Assistant professor of watershed management, Sari University of Agricultural and Natural Resources. , Razavizadeh S. Ph.D in Watershed Management, Young researches and Elite club, Karaj Branch, Islamic Azad University, Iran.
تعداد صفحه :
12
كليدواژه :
Artificial neural networks , Suspended sediment , Radial Basis Function , Multi , Layer Perceptron (MLP)
سال انتشار :
1395
عنوان كنفرانس :
اولين همايش ملي سنجش از دور و GIS محيطي
زبان مدرك :
انگليسي
چكيده فارسي :
The neural networks are trained using daily water discharge and suspended sediment discharge data belonging to Neka Catchment in IRAN.In the first part of the study, combinations of daily water discharge and suspended sediment discharge are used as inputs to the artificial neural network. In the second part of the study, the potential of the two different artificial neural networks (ANN) techniques, namely, radial basis function neural network (RBFNN) and multi-layer perceptron (MLP) is compared. The mean squared error is used as comparison criteria. The comparison results reveal that the radial basis function neural network (RBFNN) is found significantly superior to multi-layer perceptron (MLP) in suspended sediment estimation.
كشور :
ايران
لينک به اين مدرک :
بازگشت